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1 Overview

In this lecture, we delve into some basics about Game Theory and Algorithmic
Game Theory. In particular, we first introduce some basic game theory defi-
nitions and then explain Nash’s theorem, Brouwer’s fixed point problem and
Spenser’s lemma which are all in a complexity class PPAD. Finally, we provide
a proof for Brouwer’s problem using Spenser’s lemma and give an intuition for
PPAD-completeness of fining Nash’s equilibrium.

2 Algorithmic Game Theory

Game Theory is an attempt to study systems by modeling them as games. A
game can be defined as a situation where a set of agents interact or affect each
other’s outcomes.

Algorithmic Game Theory is slightly newer than general Game Theory, and
is primarily concerned with smart, selfish agents who are interested in maxi-
mizing their own utility. Algorithmic Game Theory is an attempt at making
Game Theory more “algorithmic,” by coordinating the agents with Mechanism
Design to socialize so that they may generate something good for the society as
a whole [1].

The goal of Mechanism Design is to design and impose rewarding rules to
encourage selfish agents to change their strategy and behave socially. With
Mechanism Design, we try to get an approximate optimal solution.

A solution is an outcome of a game. Typically, we are interested with stable
solutions or equilibria (or equilibrium points).

Definition 1 An equilibrium point or just equilibrium is a state in which no
person involved in the game wants any change. More precisely, an equilibrium
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is simply a state of the world where economic forces are balanced and in the
absence of external influences, the (equilibrium) values of economic variables
will not change.[1]

The existence of equilibrium is a subject of study in economics. The perfor-
mance of output (or approximation factor) is studied in both computer science
and economics. And convergence (running time) or non-convergence is a subject
of study in computer science.

There are two important classes of equilibria: Market equilibrium and Nash
equilibrium. The former is related to the games in which we have a set of
sellers and a set of buyers and want to put price on goods such that everyone
become happy at the end of the process. In this lecture we talk more about
Nash equilibrium.

3 Nash Equilibrium

A Nash equilibrium is a solution concept (a condition which identifies the equi-
librium) of a game involving two or more players in which no player has anything
to gain by changing only his or her own strategy unilaterally. In fact, such a
solution is self-enforcing in the sense that once the players are playing such a
solution, it is in every player’s best interest to stick to his strategy [1, 3].

Theorem 1 Any game with a finite set of players and finite set of strategies
has a Nash equilibrium of mixed(randomized) strategies.

Nash proved the existence of a mixed equilibrium but the computational com-
plexity of finding a mixed equilibrium, which is of obvious algorithmic impor-
tance, is unknown. To be more precise, is the problem of finding a mixed Nash
equilibrium in P? The answer to this question is unknown. We also do not know
whether the problem is NP-complete but it has been recently proven that the
problem is PPAD-complete [2].

4 Prisoners’ dilemma

Two prisoners are on trial for a crime and each face the choice of confessing to
the crime or remaining silent. If they both remain silent, the authorities will
not be able to charge them for this particular crime, and they will both face
two years in prison for minor offenses. If one of them confesses, his term will
be reduced to one year, but he will have to bear witness against the other, who
will be sentenced to five years. If they both confess, they will both get a small
break and be sentenced to four years in prison (rather than five).

We can summarize the four outcomes and the utility with the following cost
matrix :
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The only stable solution in this game is when both confess. In each of the
other three outcomes, a prisoner can switch from being silent to confessing in
order to improve his own payoff. The social optimum in this case is when both
remain silent; however, this outcome is not stable. In this game, there is a unique
optimal selfish strategy for each player, independent of what other players do.
One way to specify a game in algorithmic game theory is to explicitly list all
possible strategies and utilities of all players. Expressing the game in this form
is called the standard form or matrix form, and it is convenient to represent
two-player games with a few strategies in this form, as demonstrated for the
Prisoner’s dilemma game [3].

5 Price of Anarchy (PoA) and Price of Stability
(PoS)

The “price of anarchy” is a popular measure of inefficiency of an equilibrium.
It is defined as the ratio between the worst objective function value of an equi-
librum of the game and that of an optimal outcome (social optimum). We are
interested in a “price of anarchy” which is close to 1, i.e., all equilibriums are
good approximations of an optimal solution. For example in Prisoner’s dilemma
we have PoA = 4+4

2+2
= 2. A game with multiple equilibria has a large “price

of anarchy” even if only one of its equilibria is highly inefficient. The “price
of stability” of a game is the ratio between the best objective function value of
one of its equilibrium and that of an optimal outcome. In games with a unique
equilibrium, PoA = PoS [1].

6 Two similar problems

Another interesting problem which is well known for its non-constructive nature
and which is PPAD complete is the Brouwers fixed point problem.

3



Scribe: Soheil Ehsani
Introduction to Algorithmic Game Theory Date: 12/02/2014

Definition 2 Given a continuous function f : Bn → Bn, where Bn is an n-
dimensional unit ball, there exists a fixed point in Bn, i.e., a point x such that
f(x) = x.

The theorem clearly is an existential one and similar to the situation of
Nash’s equilibrium, finding the fixed point is hard in some way - it is PPAD-
complete.

We first prove the following lemma.

Lemma 1 (Sperners Lemma) Given a triangle ∆ and a triangulation of it.
Each vertex of ∆ is given a distinct color, say {0, 1, 2}. We color rest of the
vertices under the following restriction - If a vertex is located on an edge of
∆, then it should be colored using the colors of one of the two end points of the
edge. Under this restriction, given any arbitrary coloring of other vertices, there
always exists a tri-chromatic (colored using 3 distinct colors) atomic (without
any smaller triangles inside it) triangle.

Figure 1: An arbitrary coloring of a triangle and existence of a trichromatic
triangle.

Proof: For each inner triangle formed by the triangulation, we add a vertex
interior to that triangle. We add a special vertex a outside the triangle ∆. Now
we construct a graph on these vertices as follows - We start from a and draw an
arc joining a to the internal vertex (say v1) of some inner triangle (say ∆1) with
an edge (along an edge of ∆) colored 0, 1 . The arc is drawn in such a way that
it cuts the edge colored 0, 1. Now if triangle ∆1 has another edge colored 0, 1 we
draw an arc from v1 to v2 cutting this edge, where v2 is the internal vertex of
some triangle ∆2. We continue this process as long as possible. Observing that
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we never enter a triangle twice and given that there are finite number of inner
triangles, our process will come to a halt in finite time. Now noting that every
graph has even number of vertices of odd degree and that a is one such vertex,
we deduce that there is a internal vertex (vc) correspoding to some triangle
∆c with odd degree. But the maximum degree of any vertex is 2. Hence the
degree of vc must be 1. The only possibility of this happening is when ∆c is
trichromatic. Hence there exists a trichromatic triangle.

7 Proof of Brouwer’s theorem in 2-D

We prove the Brouwer’s theorem when the domain of the continuous function
is a triangular region in euclidean plane which is homotopic to the disk(the
2-dimensional case of the Brouwer’s theorem). In other words, consider a con-
tinuous function f : ∆ → ∆, where ∆ represents a triangular region. We prove
that there exists a point x ∈ ∆ such that f(x) = x.

By the convexity of a triangular region, every point x ∈ ∆ can be written in
the form:

x = a0x0 + a1x1 + a2x2

where a0 + a1 + a2 = 1, ai ≥ 0 and xi are the vertices of ∆. Now, we define
three sets S0, S1, S2 in the following way - Given a = (a0, a1, a2) and f(a) =
(a ′

0, a
′
1, a

′
2) , if for some i ∈ {0, 1, 2} a ′

i ≤ ai then a ∈ Si . We observe that,
if there is a point a ∈ Si ∀i ∈ {1, 2, 3} then, clearly, f(a) = a, i.e., a is a fixed
point. Our aim is to show that the three sets have a common point.

Given an arbitrary triangulation of T , we assign labels S0, S1, S2 to the ver-
tices to triangles of T . A vertex is labeled Si only if it belong to Si. We observe
that every point a = (a0, a1, a2) with f(a) = (a ′

0, a
′
1, a

′
2) can be assigned some

label. Indeed owing to the fact that a0 + a1 + a2 = 1 = a ′
0 + a ′

1 + a ′
2, it is

not possible that a ′
i > ai for every i. This implies ∃j such that a ′

j ≤ aj and we
can therefore label a with Sj. Therefore every point can be labeled with some
Sj, j ∈ {0, 1, 2}. It is clear that we can label x0 with S0, x1 with S1 and x2 with
S2. Thus the labels or colors of the vertices of ∆ are distinct. Also, the points
on the edge of ∆ opposite to the vertex xi must have the ith coordinate 0. Since
the ith coordinate of such a point cannot decrease under f, we can choose some
label other than i for those points (In other words, ai = 0⇒ ∃j 6= i : a ′

j ≤ aj ⇒
the point belongs to Sj and hence can be labeled Sj).

Hence, the resulting labeling is proper, i.e., it satisfies the requirements of
the Sperner’s lemma and we can use the lemma to find a smaller triangle which
is colored distinctly at all its nodes. Repeating this process on the smaller
triangle and continuing to do so, it can be proven that we will converge to a
fixed point.

We observe that the graph constructed in the sperners lemma has a ”path
like structure”, i.e., every vertex has degree 1 or 2. We can assign directions to
the edges of the graph in the following way - Starting from source, we assign
directions in such a way that every vertex has an in-degree at most 1 and out-
degree at most 1. The existence proof of the Nash equilibrium has the following
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abstract structure. A directed graph is defined over the vertices of the polytope
where all strategies are easily recognizable and represented. Each one of these
vertices has in-degree at most 1 and out-degree at most 1. Hence the graph
is a collection of paths and cycles. By necessity, there is one vertex with no
in-coming edge and one out-going edge - such a vertex is called the standard
source. By the basic properties of directed graphs we conclude that there must
be a vertex with out-degree 0. This sink vertex is our Nash equilibrium.

The above argument suggests a simple algorithm to find a solution - start
from the source and follow the path until you find a sink. Unfortunately, this is
not an efficient algorithm because the number of vertices in the graph could be
exponentially large. We note that even in this case the following three problems
are efficiently solvable:

• Is v a vertex of the graph?

• Is u a neighbor of v in the graph?

• Which vertex is the predecessor and which vertex is the successor of a
given vertex?

Apart from NASH there are a host of problems which are PPAD-complete
like the Sperner’s lemma on an exponentially large set of vertices, finding
Brouwer’s fixed point etc. It is unknown whether PPAD belongs to P or not.
Similar to the class NP, which has NP-complete class as a set of problems
which are interreducible in polynomial time (i.e., if one of these problems is
solved in polynomial time, so are the rest), the class PPAD has the class of
PPAD-complete class. Problems like NASH, Sperner, Brouwer, Arrow-Debreu
equilibrium etc., are PPAD-complete. PPAD-completeness is weaker than NP-
completeness because even if PPAD = P it is not clear that NP = P.
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